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Abstract

There has been a rapid growth in the use of investment mandates for

the management of fixed-income assets. In this paper, we examine how the

limits set in investment mandates can affect the bidding strategy during

the issuance of a corporate bond. We apply the uniform-price auction

and prove the existence of symmetric Bayesian Nash equilibrium. Under

the presence of an exogenous secondary market, the bidding is reduced

when there is an expectation for higher yields on resale. Also, we result

that the number of participating investors always affects inversely the

bidding strategy, while the issue rate not at all. We provide the necessary

comparative statics.
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1 Introduction

Over the last decade the global market size of corporate bonds has more than

tripled yet with a decline in the overall bond credit quality (25% in 2019 with

non-investment grade) in combination with the longer maturities. The new

environment triggered the enforcement of regulatory quantitative limits and

self-imposed rating-based investment mandates and policies. For these reasons,

there has been a large shift in passive investment management1 with major

institutional investors using external credit ratings for their investment decisions

and asset allocation [Appel et al. 2016]. For example, corporate bond ETFs2

which typically use passive investment tools have reached from USD 32 billion

in 2008 to USD 420 billion in 2018 [Çelik et al. 2020].

This trend has also been expanded in the primary market of corporate bonds,

where the demand for the new issuance may be included in bond indexes if cer-

tain criteria are satisfied. Dathan et al. [2020] show that issuers exploit this

passive demand by issuing index-eligible bonds with favorable characteristics

and a higher passive demand increases issuers’ propensity towards a new is-

suance.

Surprisingly, more and more investors complain that the access in the pri-

mary markets is restricted only to “flippers”3 supporting that “allocations al-

ways come down to favors” [Cornelli and Goldreich 2001]. Resting upon this

1These strategies refer to a buy-and-hold portfolio strategy for long-term horizons. They

are implemented by benchmarking certain market indexes (e.g. Barclays U.S. Corporate Bond

Index,i Shares Short-Term Corporate Bond ETF).
2Passive investment vehicles which track various market indexes.
3Immediately resale or “flip” the bonds to other broker-dealers at a profit

(https://www.sec.gov/news/press-release/2020-159).
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premise the Securities Exchange Commission (SEC) has launched an investi-

gation on how large financial institutions handle the allocation of debt during

the issuance and penalized in 2020 a big institution for such violation4. To this

extent, the Securities and Exchange Board of India (Sebi) proposed in 2016

a uniform-price auction for the pricing of corporate bonds which would help

deepening the market5.

The common practice for the pricing of newly issued corporate bonds is an

open-price process, called book-building. Briefly, the issuer assigns to the under-

writer the competitive sale and the efficient allocation of the new issuance. The

underwriter markets the offering to investors, asking a non-binding indication

of interest (IOIs) [Iannotta 2010; Nikolova et al. 2020]. This pre-market infor-

mation helps the underwriter to measure the demand and adjust the offering’s

price and coupon if needed. A key feature of the process is that the allocation is

left in the discretion of the underwriter with the IOIs often being cheaper than

the final price6. Due to this pre-play communication which reveals investors’

valuations, the issuance’s allocation weakly corresponds to bidding while the

yield not at all [Habib and Ziegler 2007].

In this study, we develop an exploitative model for the pricing of corporate

bonds in the primary market. We adopt the mechanism of a common-value

uniform-price auction, which allows each investment manager to act as a bidder

4https://www.ft.com/content/55406aea-a30a-11e3-ba21-00144feab7de

https://www.thetradenews.com/ubs-agrees-to-pay-10-million-to-the-sec-to-resolve-bonds-

sale-violation-charges/
5https://economictimes.indiatimes.com/mf/mf-news/sebi-proposes-uniform-pricing-for-

debt-securities/articleshow/64200207.cms?from=mdr
6Commission Expert Group on Corporate Bonds, Analysis of European Corporate Bond

Markets, November 2017
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and submit sealed-bid demand schedules. Each demand schedule specifies the

desired share over a fully divisible bond, at different yield levels complying to

bounds set by the book-runner.

Uniform-price auctions have been widely used in U.K. and U.S. for the selling

of Treasury securities, with much debate in auction theory to be around the

optimal choice between uniform-price and discriminatory auctions. However,

neither empirical research [Nyborg and Sundaresan 1996; Tenorio 1997; Binmore

and Swierzbinski 2000], nor auction theory [Wilson 1979; Back and Zender 1993;

Wang and Zender 2002; Bikhchandani and Huang 1993] offer a constraining

reason for preferring uniform to discriminatory auctions. Ausubel et al. [2014]

shown that the uniform-price auction creates demand reduction incentives to

bidders reversing its strategic simplicity and efficiency. This result favors small

bidders over the large ones and under certain assumptions the uniform auction

outperforms the discriminatory.

We encompass in our analysis the investment mandate’s parameters at which

investment managers abide by the objectives of investment strategies. For the

asset allocation limits, we employ a budget limit in line with a risk limit. The

budget limit is the available capital for investing in the new issuance (e.g. the

limit in a margin account) and the risk limit is how much risk is acceptable

for the investment’s capital (e.g. invest only in investment-grade bonds). To

our knowledge, we are the first to address these factors in a mechanism for the

pricing of corporate bonds.

Prior literature in auction theory has studied little the topic of budget limits.

Some works [Che 1998; Benoit and Krishna 2001] find that between the standard

auction formats, the second-price auction yields lower revenues than first-price
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auction in the presence of financial contraint in a private-value model, and

that the revenue of a simultenous ascending auction is lower than the revenue

of a sequential auction. Ausubel et al. [2017] study the budget constraint as

an endogenous factor and result in their experiment that the budget choices

yield higher revenues and efficiency for second-price auctions. Hafalir et al.

[2012] proposes a mechanism for divisible goods similar to Vickrey’s with a good

revenue outcome and optimality properties in which it is weakly dominated if

budgets or values are understated. Dobzinski et al. [2012] show that when

budgets are public information the “clinching auction” of Ausubel [2004] is

individual-rational and dominant strategy incentive compatible.

We include in our model the secondary market as an exogenous random

variable and we assume that all investors have the sole purpose of resale. Ex-

ante, all investors have a private valuation for the bond, based on signals received

for the expected equilibrium yield on secondary market. Thus, at the time of

the auction the exact value of the bond, i.e. the issuance’s yield, is unknown.

Theoretical research on uniform-price auctions in treasury bills markets with

resale have shown that the expected revenues for the auctioneer are higher

versus discriminatory when there is an equilibrium [Bikhchandani and Huang

1989]. Additionally, uniform auctions favor higher information release which

reduces uncertainty before the auction [Nyborg and Sundaresan 1996].

The yield of the issuance, henceforth named as the stop-out yield, is a market-

clearing yield at the point where aggregate demand equals the full face value of

the issuance, and it is defined by the first rejected bidding schedule. The intuition

is that investors want to acquire a share of the face value at the highest possible

yield to maximize their return in the secondary market.
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Interestingly, we result that the number of participating investors always

affects inversely the bidding strategy. This also applies to a constant factor

which measures the effective demand for the bond at different yield levels. On

the other side, the strategy power of budget limits is positively related to the

bidding strategy. Finally, it seems that the maximum spread that an investor

can earn from the resale directs his bidding.

The paper is organized as follows. The following section 2 contains a for-

mal analysis and describes the model as a direct revelation mechanism. In the

same section, we introduce the concept of risk limit. Section 3, studies bid-

ders’ incentives and provides the proof of a Bayes-Nash symmetric equilibrium

for independent signals performing the respective comparative statics. The last

section 4, compares the outcomes from previous sections. All proofs are ex-

panded on the Appendix.

2 Model

2.1 Preliminaries

There is a single unit of perfectly divisible bond for sale with a face value equal

to one and none of the participating investors in the auction can bid for the full

face value of the bond.

There are n competitive bidders with active bond strategies7 defined as a

finite set I={0, 1, 2, 3 . . . n}, with n ≥ 3. Also, we consider that competitive

bidders are risk-neutral, each acting to maximize their expected utility.

The equilibrium yield of the secondary market is an unknown random vari-

7Maximize their returns by taking advantage of expected changes in the curves.
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able, rs ∈ [r, r̄], with a cumulative distribution H(rs), that is common knowl-

edge to all investors. Also, it is fully supported by a density function h(rs) > 0,

∀rs ∈ [r, r̄]. The expectation over the secondary market is denoted as E[rs].

Each bidder i has upper-bound bidding, defined as the budget limit ci ∈

[c, c̄], as well as, a risk limit `i ∈ [r, r̄] stipulated by the investment mandate.

Each bidder i has a type τi = (ci, `i), with τ ∈ T , which attributes bidders’

preferences T := [c, c̄]× [r, r̄] to the eligible real intervals.

Each type τi, is i.i.d. to a continuous joint cumulative function F (τ) =

Fc`(c, `) commonly known to all bidders, fully supported by f(τ) > 0.

All information for the bidding strategies τ−i := τ1, . . . , τi−1, τi+1, . . . τn is

summarized in a joint cumulative function G(rs, τ−i) = H(rs) × F (τ−i), fully

supported by the density function g(rs, τ−i) > 0. Additionally, bidders receive

a private signal si about the actual private value of the bond and other bidders’

preferences. This information is embedded in a signal si ∈ S, where S is the

signal space with an infinite number of elements that allow each bidder’s value

to be a general function of all the signals.

The strategy of each bidder i is a bid schedule, such as

bi(r, si|τi) : S × [r, r̄]→ [0, 1] (1)

defined on the signals’ space S and a domain of eligible yields [r, r̄] ∈ R∗+ defined

by the auctioneer. Each schedule specifies the quantity demanded at a specific

yield based on the different realizations of private signals for the secondary

market. Bid schedules are assumed to be continuously differentiable to the

yield r and an increasing continuous function in the budget c and risk ` limits.

The issuance is produced through a mechanism (α, r̂) consisting of two com-

ponents: an allocation rule α and a payment rule r̂ . The allocation is the
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outcome of an increasing continuous function which takes bidding strategies

and parcels outs the issuance to each bidder. The payment rule r̂ is the stop-

out yield, common for all winners as resulted from uniform-auction format. In

other words, if b(·) is a strategy profile for each type, then αi is a fraction on

the issuance that bidder i acquires paying r̂.

For a strategy profile b(·) the payoff function of a risk-neutral bidder i given

the observed signal si ∈ S is:

E(rs,τ)[πi(b|si)] = Eτ |si

[(
r̂(b)− E[rs]

)
αi(b)

]
. (2)

2.2 Market Mechanism

In this section, we will elaborate on the mechanism that produces the out-

comes of the auction. The process starts with the simultaneous submission of

bids. Following the uniform pricing rule [Bikhchandani and Huang 1993; Wang

and Zender 2002; Krishna 2010], a step function re-indexes individual bidding

schedules till the size of the issuance is fully covered.

After the auction is completed, bidders from 1, . . . , j − 1, are called full

winners and from j + 1 . . . , n are called losers. A cutoff bidder j + 1 with a bid

schedule bj+1(rj+1, qj+1), defines the stop-out yield r̂ and is the first of losers.
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“yield”

“bid”

Q = 1

r

r̄

Θ

r̂

Figure 1: Minimum market-clearing yield displayed over aggregate inverse de-

mand curve

In the case of excess demand, D(b) > 1, there is a bidder j called partial

winner where his demand might be partially satisfied at point of stop-out yield.

[Hafalir et al. 2012].

Definition 1 Winning bidders receive the stop-out yield r̂, defined as the high-

est losing bid in a magnitude set by the pseudo-player, where

r̂ = min{r ∈ [r, r̄]
∣∣D(b) ≥ 1} (3)

and

r =


Θ− θD(b) , with b, θ > 0 and Θ > θD(b)

0 , otherwise

(4)

where D(b) =
n∑
i=1

bi(·|τi) for n ≥ 2.

Equation (4) is the inverse demand function of the issuance and is plotted in

figure (1). The parameter Θ denotes the opportunity cost for the issuers from

choosing other sources of funding (e.g. the rate of syndicated loans), while θ is
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a sensitivity factor which captures the movement of yield towards a change on

the aggregate bids D(b). In our analysis the parameter θ remains symmetric for

all bidders which means that all of them have an equal market power over the

yield’s structure.

Here below, we define an allocation rule that specifies how the asset is allo-

cated in a way that no bidder gets more than his demand curve i.e. bid schedule

[Kremer and Nyborg 2007].

Definition 2 An allocation rule is a mapping from the set of bid schedules’

profiles b(·)ni=1 to non-negative allocations α, such that D(b) ≥ 1. Non-winners

receive {α}nj+1 = 0, ∀j ∈ I and there is the partial winner j where aj = ω such

as ω ∈ (0, cj ], for cj > 0.

In other words, bidders demand a fraction of the issuance equal to their

budget limit normalizing their opportunity cost to zero (i.e. they choose a risk-

free rate). If they are among the full winners (bidders 1, . . . , j−1), they receive

an allocation equal to their full budgets. The partial winner (bidder j) receives

part of his budget equal to ω, leaving an unused budget.

2.3 The concept of risk limits

In this section, we will clarify the notion of risk limits, since the evaluation of the

payoff is only meaningful on a risk-adjusted basis and this creates limitations in

investment decisions.

The intuition behind this notion is that each asset manager complies to set

of instructions or agreed constraints to carry out the management of investor’s

wealth. For instance, the investment mandate of funds (such as pension funds,

mutual funds, ETFs, etc. ) due to its idiosyncratic structures differentiate their
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investment strategy from retail investors. This means that the asset manager

has to adhere to more rigorous guidelines which might limit the fund’s ability

to grab opportunities outside mandates. Baghai et al. [2019] perform a textual

analysis of mutual funds’ mandates and identify that credit ratings play a crucial

role. The mandates require investments in investment-grade securities, fixed

minimum ratings, or certain rating agencies.

To simplify our analysis we assume that bidders’ mandates are horizontal

and require only investment-grade bonds. Also, all bidders truthfully report

their types through budget limits. We focus for tractability reasons on a direct

revelation mechanism in which bidders reflect their budgets directly in their

bids,i.e. the bid equals to the budget limit [Hafalir et al. 2012; Dobzinski et al.

2012].

Example. Now let us assume a bidder i with a budget constraint c`i which

takes values between ci = 0 and c̄i. As the demand schedule is an increasing

continuous function in each bidder’s budget then for c`i < c̄i we have b(·|c`i) <

b(·|c̄i). By Definition (1) the inverse demand function of bidder i is given in

Figure 2. The interval [r, r̄] denotes the domain of eligible yields as defined by

the issuer, and for simplicity, we assume that the lower bound r equals to the

risk-free rate. Based on the instructions of investment mandate, bidder i will

invest a budget c`i for an acceptable risk level r`i (e.g. bonds with at least BB+

credit rating). In figure (2), this corresponds to point L. For the lower level

of risks (e.g. a credit rating above A+) the bidder will increase his bid b by

allocating more funds, extending the budget constrain on the upper bound c̄i.

Yet, if c`i reaches c̄ the bidder becomes indifferent to investing in the bond and
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the risk-free rate (point M). In reverse, for a higher risk limit which approaches

to r̄, the bid b will be lower and the budget will narrow close to ci = 0.

“yield”

“bid”ci = 0 c`i

r`i
L

r = rf

c̄i

M

r̄

Θ

Figure 2: Mapping of budget and risk constraints on the inverse demand curve.
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3 Existence of symmetric equilibrium

In this section, we prove the existence of symmetric Bayesian Nash equilibrium

(see A.1). Under the assumption that all bidders choose the same strategy

b∗, we examine the auction from the bidder’s i point of view. The analysis

from other bidders’ standpoints are symmetric. In a set of strategies b∗i (·|τi) of

n bidders, bidder i maximizes the expected payoff for different realizations of

signals. On this basis of equilibrium, information updated through the signal

space is the same and does not affect the outcome. Bidders privately observe

the same signals before bid submission.

Definition 3 For each strategy bi ∈ B, where B is the space of all strategies,

there is an optimal strategy profile b∗ = (b∗i , b
∗
−i), which maximizes the expected

payoff for all i, over the joint distribution G(rs, τ) and the signal space S. That

is, for pure strategies for bidder i:

E(rs,τ)[πi(b
∗
i , b
∗
−i|si)] ≥ E(rs,τ)[πi(bi, b

∗
−i|si)]

Bidders types are independent and identically distributed in a probability

function that is common knowledge to everyone and we assume that risk limit

`∗ is symmetric and common to all.

For our analysis, we assume that y = yn−1 is a random variable that at-

tributes the type profiles (n− 1) remaining bidders, and fy|τi denotes the con-

ditional density function of y given τi. Bidder i knows his type τi and that the

highest value component-wise in y is τ .

The expected profit of bidder i is given by:
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E(πi) = αi

∫ c̄

c`

[
r̂
(
bi(τi), b−i(y)

)
− E[rs]

]
fy|τidy (5)

where αi is the allocation rule (Definition 2),where c̄ = max
j∈N/{i}

c̄j , c
` =

max
j∈N/{i}

c`j respectively.

Thus, his decision problem is to choose a bid b to solve

max
b∗

E
[
πi(b

∗
i , b
∗
−i|si)

]
If b∗i solves this problem, then the strategy b∗i it is the best reply to b−i . . . bn.

If each b in an n − tuple of strictly increasing and differentiable strategies is a

best reply to the (n− 1) strategy profiles, the n− tuple is an equilibrium point.

Theorem 1 The n− tuple (b∗, . . . , b∗) is a symmetric Nash equilibrium under

uniform-price auctions, when bidders follow the same bidding strategy concern-

ing their budget and risk limits. For ρ(c∗) =
α′i(c

∗)
αi(c∗)

and ξ =
θ

[Θ− E[rs]]
the

bidding strategy is

b∗(c) =

∫ c̄

c`

ρ(c∗) dy

ξ n
. (6)

Proof. See the Appendix (A.1). �

To explain further the result of equation (6) in Theorem 1, the factor ρ(c∗)

captures the relative rate of change of the allocation rule αi at budget c∗. Alike

the rational of symmetric Cournot oligopoly, the more the competitive bidders

the lower the equilibrium strategy.

Corollary 1 In the equilibrium, bidders’ individual demand b∗ for the bond has

an inverse relation with θ which is their strategic power over the yield, and it is
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directly related with the maximum anticipated return Θ − E[rs] from investing

in the bond.

Proof. Results immediately from equation (6). �

Corollary 2 Suppose that the budget limits are an increasing sequence (c`k)k∈N ,

then if limc`k→c̄

∫ c̄

c`

ρ(c∗) dy = 0 and, limc̄→c`k

∫ c̄

c`

ρ(c∗) dy = 0, the symmetric

equilibrium strategy b∗ equals to zero.

Proof. The proof results immediately from Equation (6) and Figure 2. �

Proposition 1 Symmetry across bidders implies that the yield remains unaf-

fected by the number of participating bidders and the sensitivity factor θ.

Proof. In the symmetry D(b) = nb(c∗). By substitution of equation (6) in (4)

the symmetric equilibrium yield is r̂ = Θ−
( ∫ c̄

c`

ρ(c∗) dy
)(

Θ− E[rs]
)

�

Proposition 2 In a uniform-price auction the equilibrium bidding strategy,ceteris

paribus, is: (1) increased if the risk limit is increased, (2) decreased if the risk

limit is decreased.

From equation (6) and figure (2), it is evident that, ceteris paribus, (1) an

increase in the risk limit from r` to r̄ increases the lower bound of the integral

with

∫ c̄

c`

ρ(c∗) dy < lim
c`k→c

∫ c̄

c`

ρ(c∗) dy, and (2) for a decrease of r` to r, the budget

limit c` converges to c̄. �

4 Conclusion

This study attempts to apply auction theory to the pricing of corporate bonds.

The model is consistent with the presence of a secondary market and bidders’
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budget and risk limits. These three aspects capture the risk profile of corporate

bonds.

A symmetric Bayes-Nash equilibrium exists when the secondary market is

statistically independent of bidders’ types. The bidding strategy is decreased

by the number of participating bidders and by the strategic power that each

bidder acquires over the market-clearing yield. The bidding strategy is directly

related to investment mandates. If stringent mandates are followed, the bidding

will be reduced resulting in a higher issue rate.

We have modeled the opportunity cost of the issuer for other sources of

lending and the anticipated equilibrium yield in the secondary market in which

bidders can resale the bond.

Finally, we are considering to extent our research in parametric copula fami-

lies, to better evaluate the dependency strength between bidders’ types and the

secondary market.

A Appendix

A.1 Proof of symmetric equilibrium

The expected profit from (5) can be rewritten as

E(πi) = αi

∫ c`

c

r̂(bi(ci), b−i(y))f(y|c∗)dy − αiE[rs]

∫ c̄

c`
f(y|c∗)dy

= αi

∫ c̄

c`
r̂(bi(ci), b−i(y))f(y|c∗)dy − αiE[rs]F (c̄) (7)

We integrate by parts the integral

∫ c̄

c`
r̂(bi(τi), b−i(y))f(y|c∗)dy on the right

hand side of equation (7). By the continuity property of the distribution F the

probability of CDF to bid below the budget limit, for c ≤ c` equals zero.
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Since, no single bidder can buy the total issuance, r̂(bi(τi), b−i(c
`, `)) =

r̂(bi(τi), 0)) = 0. Substituting equation (5) can be re-written:

E(πi) =

[
r̂(bi(τi), b−i(y))Fc̄|c∗ +

∫ c`

c̄

r̂′(bi(τi), b−i(y))F (y|c∗)dy − E[rs]F (c̄)

]
αi

s.t.

∫ c`

c̄

r̂′(bi(τi), b−i(y))F (y|c∗)dy ≤ 0

To be a symmetric Bayesian Nash equilibrium, it is necessary that the first-

order conditions be zero. In this case, the equilibrium spread

∫ c`

c̄

r̂′(bi(τi), b−i(y))F (y|c∗)dy

caused by the strategic behavior equals zero, because all bidders have the same

type.

0 =
∂E(πi)

∂ci

∣∣∣
(ci,li)

(8)

=

[[
r̂(bi(ci), b−i(c̄))Fc̄|c∗ +

∫ c`

c̄

r̂′(bi(τi), b−i(y))F (y|c∗)dy − E[rs]F (c̄)

]
αi(c

∗)

]′

Because of the symmetry all bidders share the same type c∗, so re-writing

the first-order conditions:

= α′i(c
∗)r̂(bi(c

∗), b−i(c
∗))F (c∗)+αi(c

∗)r̂′(bi(c
∗), b−i(c

∗))F (c∗)−α′i(c∗)E[rs]F (c∗)

We substitute (4) to (8) and for simplicity reasons we denote ρ(c∗) =
α′i(c

∗)
αi(c∗)

.

Thus, we result:

ρ(c∗) [Θ− n θ bi(c∗)]F (c∗) + [−θ n b′i(c∗)]F (c∗)− ρ(c∗)E[rs]F (c∗) = 0
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Denominating with (−θnFc(c∗)) and by substitution of ξ =
θ

[Θ− E[rs]]
, the

solution is a first-order non-homogeneous differential equation:

b′i(c
∗) + ρ(c∗) bi(c

∗) =
ρ(c∗)

ξ n
(9)

bi(c
∗) = e−

∫ c̄

c`
ρ(c∗) dc

∫ c̄

c`
e
∫ c̄

c`
ρ(c∗) dc ρ(c∗)

ξ n
dc + Γ (10)

where Γ is an arbitrary constant. Applying the Fundamental Theorem of

Calculus for c∗ = 0 ,the arbitrary constant equals zero.

By substitution ρ(c∗) is the differentiation of natural log α(c∗) . Thus,

equation (10) can be rewritten as:

bi(c
∗) = e

lnα(c∗)
∣∣c`
c̄

∫ c̄

c`
e
lnα(c∗)

∣∣c̄
c`

(
ρ(c∗)

ξ n

)
dy

bi(c
∗) =

elnα(c`)

elnα(c̄)

∫ c̄

c`

elnα(c̄)

elnα(c`)

(
ρ(c∗)

ξ n

)
dy

b∗(c∗) =

∫ c̄

c`
ρ(c∗) dy

ξ n
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